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ABSTRACT
Maximum Margin Criterion (MMC) is an efficient and robust

feature extraction method, which has been proposed recently.

Like other kernel methods, when MMC is extended to Re-
producing Kernel Hilbert Space via kernel trick, its perfor-

mance heavily depends on the choice of kernel. In this paper,

we address the problem of learning the optimal kernel over a

convex set of prescribed kernels for Kernel MMC (KMMC).

We will give an equivalent graph based formulation of MMC,

based on which we present Multiple Kernel Maximum Mar-

gin Criterion (MKMMC). Then we will show that MKMMC

can be solved via alternative optimization schema. Experi-

ments on benchmark image recognition data sets show that

the proposed method outperforms KMMC via cross valida-

tion, as well as some state of the art methods.

Index Terms— Maximum Margin Criterion, Multiple

Kernel Learning, Feature Extraction

1. INTRODUCTION

Feature extraction is an important topic in pattern recognition

and computer vision. The most popular unsupervised feature

extraction method is principal component analysis (PCA) [1].

It aims to find a subspace in which the variance of the pro-

jected data is maximized. Since PCA does not take into ac-

count the class information, the features extracted are not very

suitable for classification.

Recently, a feature extraction method, named Maximum
Margin Criterion (MMC) [2], has been proposed, which aims

to find a subspace in which a point is close to those in the

same class but far from those in different classes, i.e.

max tr(AT (Sb − Sw)A),
s.t. AT A = I (1)

where Sb =
∑c

i=1 ni(mi−m)(mi−m)T is called between-

class scatter matrix, mi and ni are mean vector and size of

class i respectively, m = 1
n

∑c
i=1 nimi is the overall mean
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vector, Sw =
∑c

i=1 Si is the within-class scatter matrix, Si is

the covariance matrix of class i, tr(·) denotes the matrix trace,

and I denotes the identity matrix.

Like other kernel methods [3] [4], when MMC is extended

to Reproducing Kernel Hilbert Space via kernel trick, its per-

formance heavily depends on the choice of kernel. In this pa-

per, motivated by the recent advance in multiple kernel learn-

ing [5] [6] [7], we address the problem of learning the opti-

mal kernel over a convex set of prescribed kernels for Kernel

MMC. First, we will give an equivalent graph based formula-

tion of MMC. Second, we will present Multiple Kernel Max-

imum Margin Criterion (MKMMC) based on the graph for-

mulation of MMC. Thirdly, we will show that MKMMC can

be solved via alternative optimization schema. Experiments

on benchmark image recognition data sets show that the pro-

posed method outperforms KMMC via cross validation, as

well as some state of the art methods.

The remainder of this paper is organized as follows. In

Section 2, we present Multiple Kernel Maximum Margin Cri-

terion. Experiments on benchmark data sets are demonstrated

in Section 3. Finally, we draw a conclusion in Section 4.

2. THE PROPOSED METHOD

In this section, we will first give an equivalent graph formu-

lation of MMC, followed which we will present the MK-

MMC. Finally, we will give the optimization algorithm for

MKMMC.

2.1. Graph based Formulation of MMC

Recently, [8] presented a graph embedding framework, under

which many dimensionality reduction methods can be unified.

We will show that Maximum Margin Criterion (MMC) [2]

can also been reformulated by graph. According to [8], the

between-class scatter matrix Sb can be written as

Sb =
∑
i,j

||xi − xj ||2W b
ij (2)
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where Wb is defined as follows

W b
ij =

{
1
n − 1

nk
, if yi = yj = k,

1
n , otherwise.

(3)

where nk is the number of points in the k-th class. And the

within-class scatter matrix Sw can be written as

Sw =
∑
i,j

||xi − xj ||2Ww
ij (4)

where Ww is defined as

Ww
ij =

{
1

nk
, if yi = yj = k,

0, otherwise.
(5)

Therefore, Sb − Sw can be written as

Sb − Sw

=
∑
i,j

||xi − xj ||2(W b
ij − Ww

ij )

=
∑
i,j

||xi − xj ||2Wij (6)

where W = Wb − Ww is defined as

Wij =
{

1
n − 2

nk
, if yi = yj = k,

1
n , otherwise.

(7)

Substituting Eq.(6) into Eq.(1) leads to

∑
i,j

||AT xi − AT xj ||2Wij . (8)

Eq.(8) is an equivalent graph based formulation of Maximum

Margin Criterion (MMC).

2.2. Kernel MMC

In [2], Kernel MMC was presented straightforwardly based

on Eq.(1). Here we will derive Kernel MMC from Eq.(8),

which alleviates the derivation of Multiple Kernel Maximum

Margin Criterion.

We consider the problem in a feature space F induced by

some nonlinear mapping φ : R
d → F . For a proper chosen

φ, the inner product 〈, 〉 in F is defined as

〈φ(x), φ(y)〉 = K(x,y), (9)

where K(, ) : X × X −→ R is a positive semi-definite kernel

function. The mostly used kernel functions include:

1. Linear Kernel:K(x,y) = xT y;

2. Polynomial Kernel:K(x,y) = (1 + xT y)d;

3. Gaussian Kernel:K(x,y) = exp(− ||x−y||2
γ ).

Let Φ = [φ(x1), φ(x2), . . . , φ(xn)] denote the data ma-

trix in the feature space F , then Eq.(8) can be extended to

Reproducing Kernel Hilbert Space RKHS [4] as follows,

∑
i,j

||AT φ(xi) − AT φ(xj)||2Wij . (10)

where A = [a1, . . . ,am]. By the Representor Theorem [4],

ai are linear combinations of φ(x1), . . . , φ(xn), hence there

exist coefficients αj
i , j = 1, 2, . . . , n, such that

ai =
n∑

j=1

αj
i φ(xj) = Φαi, (11)

where αi = (α1
i , α

2
i , . . . , α

n
i )T , and

A = ΦA, (12)

where A = [α1, . . . ,αm].
Submit Eq.(12) into Eq.(10), we obtain

∑
i,j

||AT ΦT φ(xi) −AT ΦT φ(xj)||2Wij

=
∑
i,j

||AT Ki −AT Kj ||2Wij (13)

where ATA = I and Ki is defined as follows

Ki =

⎡
⎢⎢⎢⎣

K(x1,xi)
K(x2,xi)

...

K(xn,xi)

⎤
⎥⎥⎥⎦ (14)

Eq.(13) is exactly Kernel MMC, which is equivalent to that in

[2].

2.3. Multiple Kernel MMC

In the setting of multiple kernel learning [5], we are given a

set of kernel functions {Kt}p
t=1. Then we are going to learn

an optimal convex combination of kernels, which is restricted

to

K ∈ {K : X × X → R|K =
p∑

t=1

θtK
t,

p∑
t=1

θt = 1, θt ≥ 0},
(15)

And the corresponding set of kernel matrices is

K ∈ {K ∈ R
n×n|K =

p∑
t=1

θtKt,

p∑
t=1

θt = 1, θt ≥ 0}.
(16)

where Kt ∈ R
n×n are the kernel matrices computed by the

kernel functions Kt.

Substitute Eq.(16) into Eq.(13), we obtain

∑
i,j

||AT
∑

t

θtKt
i −AT

∑
t

θtKt
j ||2Wij (17)
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where Kt
i is defined as follows

Kt
i =

⎡
⎢⎢⎢⎣

Kt(x1,xi)
Kt(x2,xi)

...

Kt(xn,xi)

⎤
⎥⎥⎥⎦ (18)

By defining

Gi =

⎡
⎢⎢⎢⎣

K1(x1,xi) . . . Kp(x1,xi)
K1(x2,xi) . . . Kp(x2,xi)

...
. . .

...

K1(xn,xi) . . . Kp(xn,xi)

⎤
⎥⎥⎥⎦ (19)

Eq.(17) can be rewritten as

∑
i,j

||AT Giθ −AT Gjθ||2Wij (20)

where θ = [θ1, . . . , θp]T .

Till now, we have presented the Multiple Kernel Maxi-

mum Margin Criterion (MKMMC), which is summarized as

follows

max
∑
i,j

||AT Giθ −AT Gjθ||2Wij

s.t. ATA = I,
p∑

t=1

θt = 1, θt ≥ 0 (21)

2.4. Optimization

As we see, maximizing Eq.(21) is with respect to A and θ.

And we cannot give a closed-form solution. In the follow-

ing, we will present an alternating schema to optimize the

objective. In other word, we will optimize the objective with

respect to A (or θ) while fixing θ (or A). This procedure

repeats until convergence.

2.4.1. Computation of A
In order to compute A, we fix θ, then optimizing Eq.(21) is

equivalent to optimizing

max
∑
i,j

||AT Giθ −AT Gjθ||2Wij

= max AT LθA
s.t. ATA = I (22)

where Lθ =
∑

ij Wij(Gi − Gj)θθT (GT
i − GT

j ). The op-

timal A of Eq.(22) is composed of the m eigenvectors corre-

sponding to the largest m eigenvalues of Lθ.

2.4.2. Computation of θ

In order to compute θ, similar with the computation of A,

we fix A. Then by the property ||B|| = ||BT ||, optimizing

Eq.(21) is equivalent to

max
∑
i,j

||θT GT
i A− θT GT

j A||2Wij

= max θT LAθ

s.t.

p∑
t=1

θt = 1, θt ≥ 0 (23)

where LA =
∑

ij Wij(GT
i −GT

j )AAT (Gi−Gj). However,

the optimal θ cannot be solved by eigen-decomposition since

the additional constraint
∑p

t=1 θt = 1, θt ≥ 0. Eq.(23) is a

linear constrained quadratic programming [9], which can be

solved by quadprog() in Matlab.

3. EXPERIMENTS

In this section, we will investigate the performance of the pro-

posed method. We compare MKMMC with MMC, KMMC

via cross validation (KMMCcv), as well as PCA and Kernel

PCA via cross validation (KPCAcv).

3.1. Data Sets

In our experiments, we use 3 standard image recognition

databases which are widely used as benchmark data sets in

feature extraction literature.

The ORL face data set1 contains 10 images for each of the

40 human subjects, which were taken at different times, vary-

ing the lightings, facial expressions and facial details. The

original images (with 256 gray levels) have size 92 × 112,

which are resized to 32 × 32 for efficiency;

The Yale data set2 contains 11 gray scale images for each

of the 15 individuals. The images demonstrate variations in

lighting condition, facial expression and with/without glasses.

In our experiment, the images were also resized to 32 × 32;

The Coil20 data set3 contains 32×32 gray scale images of

20 3D objects viewed from varying angles, at the interval of 5
degrees, resulting 72 images per object. The original images

are resized to 32 × 32 for efficiency.

3.2. Parameter Settings

For each data set, we randomly divide it into training and test-

ing sets. In detail, for each individual in the ORL and Yale

data sets, p = 2, 3, 4 images were randomly selected as train-

ing samples, and the rest were used for testing, while for each

individual in the Coil20 data set, p = 2, 3, 4 images were

1http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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randomly selected as training samples. We use the images in

the training set to learn a subspace, and the recognition was

performed in the subspace by Nearest Neighbor (NN) Classi-

fier. Since the training set was randomly chosen, we repeated

each experiment 20 times and calculated the average recog-

nition accuracy. In general, the recognition rate varies with

the dimensionality of the subspace. The best average perfor-

mance obtained as well as the corresponding dimensionality

is reported.

We use Gaussian kernel for all the kernel methods. For

KPCA and KMMC, the hyper-parameter γ in Gaussian ker-

nel is set via the grid {2−5σ2
0 , 2−4σ2

0 , 2−3σ2
0 , 2−2σ2

0 , 2−1σ2
0 ,

σ2
0 , 2σ2

0 , 22σ2
0 , 23σ2

0 , 24σ2
0 , 25σ2

0}, where σ0 is the mean dis-

tance between any two samples in the training set. We use

leave-one-out cross validation on the training set, and the best

γ is chosen for the testing. For MKMMC, we use 11 Gaus-

sian kernels whose parameters correspond to the γ in the grid

mentioned before.

3.3. Recognition Accuracy

Table 1, 2 and 3 show the experimental results of all the meth-

ods on the three databases respectively, where the value in

each entry represents the average recognition accuracy of 20

independent trials, and the number in brackets is the corre-

sponding projection dimensionality.

Table 1. Classification Accuracy on ORL data set.

Method 2 Train 3 Train 4 Train

PCA 70.67(79) 78.88(118) 84.21(152)

KPCAcv 70.67(80) 78.88(118) 84.17(153)

MMC 73.23(40) 82.80(40) 90.00(40)

KMMCcv 75.62(39) 86.54(38) 91.79(39)

MKMMC 79.09(39) 88.84(40) 93.79(40)

Table 2. Classification Accuracy on Yale data set.

Method 2 Train 3 Train 4 Train

PCA 46.04(29) 49.96(44) 55.67(58)

KPCAcv 46.04(29) 49.96(44) 55.71(58)

MMC 51.93(15) 61.13(15) 67.95(15)

KMMCcv 52.15(14) 64.04(14) 71.62(14)

MKMMC 53.89(14) 66.83(14) 73.52(14)

It is clear that MKMMC outperforms KMMC via cross

validation as well as the other methods on all the data sets.

4. CONCLUSION

In this paper, we address the problem of learning the opti-

mal kernel over a convex set of prescribed kernels for Kernel

MMC. First, We give another formulation of Kernel MMC,

Table 3. Classification Accuracy on Coil20 data set.

Method 4 Train 6 Train 8 Train

PCA 82.17 (18) 86.86(18) 89.09(16)

KPCAcv 82.12 (18) 86.83(18) 89.05(16)

MMC 84.57(9) 89.32(13) 92.45(10)

KMMCcv 84.69(8) 89.60(8) 93.14(8)

MKMMC 85.53(9) 90.18(12) 93.32(12)

based on which we present Multiple Kernel Maximum Mar-

gin Criterion (MKMMC). Then we show that MKMMC can

be solved via alternative optimization algorithm. Experiments

on benchmark image recognition data sets show that the pro-

posed method outperforms Kernel MMC via cross validation,

as well as some state of the art methods.
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